Short Communication

In Vitro Combination Effects of Aztreonam and Aminoglycoside against Multidrug-Resistant *Pseudomonas aeruginosa* in Japan

Hideki Araoka1*, Masaru Baba1, Kazuhiro Tateda2, Yoshikazu Ishii2, Toyoko Oguri2, Katsuko Okuzumi2, Tsuyoshi Oishi1, Shinichiro Mori2, Toshihiro Mitsuda1, Kyoji Moriya1, Yoshihata Nakamori1, Norio Ohmagari10, Keizo Yamaguchi1, Akiko Yoneyama1, and ABX Combination Therapy Study Group

1Department of Infectious Diseases, Toranomon Hospital, Tokyo 105-8470; 2Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo 143-8540; 3Laboratory Medicine, Kameda Medical Center, Chiba 296-8602; 4Department of Medical Safety Administration Division of Infection Control Dokkyo Medical University Hospital, Tochigi 321-0293; 5Department of Infectious Diseases, Tokyo Medical University Ibaraki Medical Center, Ibaraki 300-0395; 6Hematopoietic Stem Cell Transplantation Unit, National Cancer Center Hospital, Tokyo 104-0045; 7Department of Infection Prevention and Control, Yokohama City University Hospital, Kanagawa 236-0004; 8Department of Infection Control and Prevention, Graduate School of Medicine Faculty of Medicine, The University of Tokyo, Tokyo 113-0033; 9Department of Respiratory Diseases, Misuku Hospital, Tokyo 153-0051; and 10Division of Infectious Diseases, Shizuoka Cancer Center, Shizuoka 411-8777, Japan

(Received August 8, 2011. Accepted November 8, 2011)

SUMMARY: The aim of this study was to evaluate the in vitro combination effects of aztreonam (AZT) and aminoglycosides against multidrug-resistant (MDR) *Pseudomonas aeruginosa* strains in Japan. We investigated 47 MDR *P. aeruginosa* strains collected from 8 facilities. We selected the aminoglycosides amikacin (AMK), gentamicin (GM), and arbekacin (ABK) to examine their effects when combined with AZT using the checkerboard method. Of the 47 MDR *P. aeruginosa* strains, 41 tested positive for metallo-β-lactamase (MBL). In all combinations, aminoglycosides decreased the minimum inhibitory concentrations of AZT in a dose-dependent manner, and there was no apparent antagonism. The combination effects were scored on a scale of 0 to 4, and statistical analysis was performed using the Wilcoxon signed-rank test. In all 47 strains, AZT + ABK (mean score, 2.02) had the highest score, followed by AZT + AMK (1.68) and AZT + GM (1.38) (ABK versus GM, $P < 0.0001$). In 41 MBL-positive strains, AZT + ABK (mean score, 2.05) had the highest score, followed by AZT + AMK (1.56) and AZT + GM (1.37) (ABK versus AMK, $P = 0.02$, and ABK versus GM, $P < 0.0001$). AZT + ABK was the most promising combination regimen against MDR *P. aeruginosa* strains; the other promising combinations were AZT + AMK and AZT + GM.

Pseudomonas aeruginosa is a clinically significant Gram-negative rod and an important cause of hospital-acquired infection, particularly in immunocompromised patients. Multidrug-resistant (MDR) *P. aeruginosa* is emerging as a serious problem in clinical settings worldwide. Since intravenous colistin is not available in Japan, combination therapy is required. Tateda et al. have suggested the usefulness of a "Break-point Checkerboard Plate" to screen appropriate antibiotic combinations against MDR *P. aeruginosa* (1). A "Break-point Checkerboard Plate" is used to evaluate the effect of combination therapy with reference to the breakpoint concentration, which correlates with clinical efficacy. It allows for simultaneous evaluation of the effect of combination antimicrobial therapy using 8 clinically important agents (ceftazidime, piperacillin, imipenem [IMP], aztreonam [AZT], gentamicin [GM], ciprofloxacin, polymyxin B, and rifampicin) on a single plate. In Japan, a commercially available "Break-point Checkerboard Plate" is the BC plate EIKEN (Eiken Chemical, Tokyo, Japan), which includes amikacin (AMK), meropenem, and colistin instead of GM, IMP, and polymyxin B. IMP-type metallo-β-lactamase (MBL) production is frequently observed in highly resistant *P. aeruginosa* strains isolated in Japan (2). MBL-producing *P. aeruginosa* strains often remain susceptible to monobactams (3,4). Our previous study also demonstrated that the combination of AZT and aminoglycoside was often effective against *P. aeruginosa*, both in vitro and in vivo (5). In this study, we investigated the in vitro effects of a combination of AZT and aminoglyco-
MDR P. aeruginosa strains were obtained from the urinary tract as intermediate). Since the breakpoint of ABK against corrobated with clinical efficacy. A score of 4 (inhibited effects with reference to the breakpoint concentration es-
formed using a 0–4 scale to evaluate the combination ef-
scored and evaluated. In this study, scoring was per-
used as an alternative (7). Combination effects were
employed in this study (6,7). MBL was detected using the
standards of antibiotic susceptibility testing were ap-
plied in this study (6,7). MBL was detected using the sodium mercaptoacetate (SMA) disc method, em-
ploying SMA, ceftazidime, and IMP disks.

The clinically therapeutic MIC for AZT was 16
µg/mL (intermediate). The combination of AZT and each aminoglycoside was defined as effective at the fol-
lowing concentrations: 16 µg/mL AZT (intermediate) + 32 µg/mL AMK (intermediate), 16 µg/mL AZT (intermediate) + 8 µg/mL GM (intermediate), and 16 µg/mL AZT (intermediate) + 8 µg/mL ABK (defined as intermediate). Since the breakpoint of ABK against P. aeruginosa was not defined, the GM criterion was used as an alternative (7). Combination effects were scored and evaluated. In this study, scoring was performed using a 0–4 scale to evaluate the combination effects with reference to the breakpoint concentration established by the “Break-point Checkerboard Plate” correlated with clinical efficacy. A score of 4 (inhibited bacterial growth in the following combination: AZT [susceptible] + aminoglycoside [susceptible]) indicated the most promising combined effect, while a score of 0 (bacterial growth not inhibited even by the following combination: AZT [intermediate] + aminoglycoside [intermediate]) indicated that there was no combination effect (Fig. 1). Statistical analysis was performed using the Wilcoxon signed-rank test. A P value <0.05 was considered significant. All analyses were conducted using SPSS (version 11.0 for Windows; SPSS Inc., Chicago, Ill., USA).

Of the 47 MDR P. aeruginosa strains, 41 were MBL positive and 6 were negative. The MICs of AZT as a single agent were as follows: 8 µg/mL (2 strains), 32 µg/mL (18 strains), 64 µg/mL (18 strains), and >128 µg/mL (9 strains). The clinically therapeutic MIC of AZT was 16 µg/mL (intermediate). AZT as a single agent achieved an effect that is likely to be clinically significant in only 4% of strains (2 of 47 strains). In all combinations, aminoglycoside decreased the MICs of AZT in a dose-dependent manner, and there was no apparent antagonism. The combinations of AZT and aminoglycosides required to achieve these effects were as follows: 16 µg/mL AZT + 32 µg/mL AMK (77%, 36 of 47 strains), 16 µg/mL AZT + 8 µg/mL GM (43%, 20 of 47 strains), and 16 µg/mL AZT + 8 µg/mL ABK (79%, 37 of 47 strains).

In addition, the combination effects were scored and evaluated as described above. For the combination ef-
flect score, AZT + ABK (mean score, 2.02) was the highest, followed by those of AZT + AMK (mean score, 1.68) and AZT + GM (mean score, 1.38) in all 47 strains. The combined effect of AZT + ABK was signifi-
cantly higher than that of AZT + GM (P < 0.0001) (Fig. 2). The combination effects on 41 MBL-positive strains were highest for AZT + ABK (mean score, 2.05), followed by AZT + AMK (mean score, 1.56) and

<table>
<thead>
<tr>
<th>Antibiotic A (aztreonam)</th>
<th>Score 4</th>
<th>Antibiotic A (aztreonam)</th>
<th>Score 3</th>
<th>Antibiotic A (aztreonam)</th>
<th>Score 2</th>
<th>Antibiotic A (aztreonam)</th>
<th>Score 1</th>
<th>Antibiotic A (aztreonam)</th>
<th>Score 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>(aminoglycoside)</td>
<td>intermediate</td>
<td>susceptible</td>
<td>intermediate</td>
<td>antibiotic A</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>susceptible</td>
<td></td>
<td></td>
<td></td>
<td>antibiotic A</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Fig. 1. Combination effects were scored and evaluated. Minus signs indicate each drug combination concentration that inhibited bacterial growth. Scoring was performed using a scale from 0 to 4 in this study. Score 4 (inhibited bacterial growth in the following combination, aztreonam [AZT]: susceptible + aminoglycoside: susceptible) indicated the most promising combined effect, while score 0 (bacterial growth not inhibited even by the following combination, AZT: intermediate + aminoglycoside: intermediate) indicated that there was no combination ef-
fect.
AZT + GM (mean score, 1.37). The combined effect of AZT + ABK was significantly higher than that of AZT + GM (P < 0.0001) and AZT + AMK (P = 0.02) (Fig. 3).

In Japan, the production of MBL is often implicated in the high-level resistance of P. aeruginosa. It has been reported that IMP is encoded by the blaIMP gene on an integron (2). In this study, out of the 47 MDR P. aeruginosa strains, 41 were MBL positive (18 strains for IMP-1, 10 for IMP-7, 12 for IMP-10, and 1 for VIM-2); 6 strains were MBL negative, and most MBL-producing MDR P. aeruginosa strains were the IMP type, as previously reported (2). PCR detection of various MBLs was performed by Hiroshi Kataoka, and this information was received as a personal communication.

Strains producing MBLs often remain susceptible to monobactams. However, AZT as a single agent achieved a clinical effect in only 4% of the strains (2 of 47 strains). AZT and aminoglycosides in combination were associated with a high probability of achieving a clinical effect. In addition, there was no antagonism. Therefore, the combination of AZT and aminoglycosides seems to be promising. This regimen may provide an effective second line of therapy for patients in whom intravenous colistin cannot be used. Our study was conducted to evaluate which aminoglycoside was appropriate to be used in combination with AZT. With respect to the combination effects, AZT + ABK showed the highest scores, followed by AZT + AMK and AZT + GM. Statistical analysis indicated that the combined effect of AZT + ABK was significantly higher than that of AZT + GM in all 47 strains.

In Japan, studies have shown that the mechanism most frequently underlying resistance to aminoglycosides was inactivation of the antibacterial agent by aminoglycoside-modifying enzymes (8,9). Other known mechanisms include the methylation of 16S rRNA (10) and increased expression of drug-efflux pumps (11). ABK, the semisynthetic aminoglycoside used in clinical settings in Japan, is effective against Gram-negative bacilli, including P. aeruginosa, as well as methicillin-resistant Staphylococcus aureus (MRSA) (12). ABK is stable against most aminoglycoside-modifying enzymes, and only the bifunctional enzyme AAC(6')/APH(2') is known to have low or moderate resistance to ABK (13,14). Therefore, ABK, similar to AMK, is regarded a strong candidate for combination use with AZT. Further studies are needed to analyze MDR P. aeruginosa strains from the perspective of aminoglycoside-modifying enzymes.

In conclusion, our study showed that AZT + ABK was the most promising combination regimen against MDR P. aeruginosa strains; the other promising regimens were AZT + AMK and AZT + GM.

Acknowledgments This work was supported in part by a Research Grant from Okinaka Memorial Institute for Medical Research, Tokyo, Japan.

This work was presented in part at the 50th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Boston, USA, September 12–15, 2010.

Conflict of interest None to declare.

REFERENCES