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SUMMARY: Infection transmission systems circulate infection through complex contact patterns related to
both contact patterns and patterns of factors that affect the risk of transmission given contact. The nonlinear
dynamics of infection transmission cause these patterns to make big differences in population infection levels. A
science of infection transmission system analysis is needed to focus on those details that affect the control of
infection transmission. This science must have a strong theoretical base because there is little chance that a
dominantly data based approach not using mechanistic models of transmission will have any predictive value.
The theoretical base should be built on linked transmission system models that are focused on making needed
inferences for both building the theoretical base and making infection control decisions. The linking of different
models is needed for a strategy of inference robustness assessment that is designed to find the model that is
simple enough to effectively analyze the transmission system but not so simple that realistic violation of simplify-
ing assumptions will change an inference. Types of models that should be used in such linked analyses include
deterministic and stochastic compartmental models, discrete individual models with individual event histories
but structured mass action mixing, network models that provide more detail as to who has contact with whom,
and intermediate model forms such as correlation models that address some aspects of contact details while
preserving the flexibility of deterministic compartmental models to structure mixing and analyze the system.
While transmission system science is currently weak in regards both to its data base and its theory base, many
things are now coming together that could make this science flourish. On the data side these include greater
ability to detect infectious agent sequences in the environment and greater ability to sequence and genetically
relate agents identified at different sites in the transmission system. On the theory sides, new model construction
and model analysis methods are providing new potential to use the new sources of data. Also new parameter

estimation methods provide new potential to combine models and data in effective analytic strategies.

Introduction

A science of infection transmission is needed to assess and
counter the threat of newly emerging and bioterrorist spread
infections as well as to reduce the high burden of disease
from established infection transmission patterns. To make
progress, this science must analyze infection transmission
system models.

Transmission system components include infectious agents,
hosts, the space in which hosts move, and environments
affecting how infectious agents reproduce or survive outside
of hosts. Transmission system processes include those that
generate the natural history of infection and contagiousness,
mechanisms by which agents leave hosts, all the modes of
transmission that enable agents to survive as they transit from
one host to another, the processes that lead to contact between
hosts, and the evolutionary mechanisms of the agent and
hosts. A movie of an actual transmission system would have
a background of all the elements of the system including
the dynamic movements of hosts. It would show all the
infectious agents, their multiplication, and their variations in
genetic structure and fitness.

Transmission system models make simplifying assump-
tions about the bewildering complexity of actual systems. The
pattern of contacts might be simplified by just specifying an
effective contact function that assumes random mixing. From
that simplicity one might go on to progressively specify popu-
lation groups, population movement patterns, locations where
people meet, vehicles and or vectors of transmission, factors
that alter the risk of transmission, and myriad other details.

Transmission system model output is a dynamic pattern of
infection flows, infected and/or immune hosts, and agent
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diversification within population groups and sites. A flow of
infection involves movement of a reproductive lineage of an
infectious agent from one host population group or transmis-
sion site to another.

Transmission system model analysis involves determining
how patterns of infection proliferation and flow are modified
by infectious agent characteristics, host response patterns,
environmental conditions and/or contaminations, patterns
of contagiousness and immunity upon infection, behaviors,
social structures, social events, and/or control actions. Trans-
mission system analysis must follow the definition of the
ends that the analysis is to pursue. That is because infection
transmission systems have many complicated details and non-
linear dynamics that give rise to complex patterns in even
simple models. These make it impossible to construct a single
highly detailed model that is suitable for a wide variety of
uses.

Uses for transmission system analyses

The uses of modeling include gaining general insights,
generating testable hypotheses, organizing and defining
what is and is not known, interpreting observations, express-
ing scientific theories, predicting effects of actions or events,
improving communication in social decision making pro-
cesses, designing studies, and analyzing data. A model analy-
sis for one use may be robust to realistic relaxation of
its simplifying assumptions while for another use it may be
sensitive to those same assumptions.

A common use of modeling is to choose a course of action
for infection control. When specifying such a use, the alter-
native actions to be explored need to be expressly defined so
that the models can be constructed to incorporate the actions
under consideration as well as realistic details that could



change the choice of an action. Another use that should
become increasingly important is the choice between trans-
mission system theory alternatives. For example we might
want to know the effect of environmental conditions on trans-
mission risks or whether one particular group is sustaining
transmission and disseminating it to others. For either of these
two uses the inference robustness strategy to be presented
later is essential. We focus mainly, however, on the question
of choosing among infection control options.

Controlling infection transmission

New vaccines, chemoprophylactic agents, treatments, and
disinfectants help us counter infection threats. But these tools
alone are insufficient. Analyses of transmission systems
are needed to indicate when and where to use these tools.
Moreover it takes time to develop biologics. Consequently
control tools during the early stages of emerging infections
are constrained to contact tracing with quarantine, early
diagnosis leading to early isolation of cases, decontamina-
tion, and contact rate reduction. These control actions are
costly, difficult, and require many precise implementation
decisions if they are to be effective. For example one must
decide how many resources to dedicate to the speed with
which quarantine is imposed, to the inclusion under quaran-
tine of contacts that have had different classes of interaction
with a case, to detection of cases with no history of contact,
etc. Thus analyses of infection transmission systems are even
more important during the early stage of emerging infection
epidemics. To be feasible and useful early during epidemics,
strong modeling traditions and methods need to be established.

Assessing the effects of actions to control infection trans-
mission is tricky because the indirect effects of interventions
are usually greater than the direct effects. That is to say, more
people are protected because the chains of infection leading
to them are interrupted than are protected because they
received a vaccine or some other intervention. Indirect effects
are especially sensitive to the nature and arrangement of
contacts that transmit infection. Thus one of the key aspects
of infection transmission system modeling is insuring that
inferences made on the basis of model analyses are robust to
realistic violation of assumptions about patterns of contact
between hosts.

To prevent and control epidemics or reduce levels of
endemic infection, it helps to know the population groups or
environmental niches where infectious agents amplify their
numbers, how they flow from one group to another through
the population of interest, which sites of amplification and/
or which infection flows will be affected by control actions,
and how interruption of specific flows will alter the overall
pattern of flows and the overall level of infection in a popula-
tion. Models organize our thinking about such complex
issues, provide insights about which control actions will work
under different conditions, make predictions about the effects
of control actions, help specify data needed to evaluate
effects of control actions, and help analyze those data.

Models, data, theory, and action

Whenever we make an infection transmission control
decision, we use models of transmission systems. The model
may just be a mental one that provides a basis for thinking
about the decision. We use the model to project what would
happen under alternative actions. The more we formalize
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decision models and make clear their assumptions and
potential fragilities, the better their predictions and our deci-
sions will be. To explore current limitations of transmission
system models and envision a path to expansion of their po-
tential, we discuss here two dimensions that can characterize
the strength of a science. These are the empirical-statistical
or database dimension and the mechanistic-causal or theory
dimension. The ideal science is strong in both these dimen-
sions. Infection transmission science is currently weak in both
dimensions.

The mechanistic or theory dimension captures how well
processes in models relate to causal processes in the real
world. A science is on the weak end when its theories do not
make detailed testable predictions or when predictions made
are untested by data. It is on the strong end when its detailed
theories have been well tested and have made unexpected
predictions that subsequent observations have confirmed.

The empirical or database dimension captures the quantity
and quality of observations on the phenomena that are
modeled. If model output can be repeatedly observed in the
real world, such as is often the case when the phenomena are
at the molecular, cellular, or individual patient levels, then
the model can make accurate predictions even in the absence
of mechanistic-causal theory. Sampling theory and statistical
models are sufficient for good predictions given the assump-
tion that causal processes will be the same in the future as in
the past. Evidence based practice of medicine uses such theory
and models. It considers the best evidence to be randomized
control trials that may do little to elucidate the causal mecha-
nisms making one therapy better than another.

Evidence based infection transmission control in popula-
tions, however, cannot proceed without strong causal mecha-
nistic theory, however, because repeated observations at a
population level are difficult and expensive. Moreover the
nonlinear dynamics and complexity of infection transmission
systems mean that minor differences in situations can
generate big differences in outcomes. Thus, when a new
epidemic appears, it is hard to specify which set of past
epidemic patterns are appropriate for predicting the course
of this new epidemic. Take, for example, the use of risk group
focused screening programs to stop HIV transmission. In one
situation there might be a core group which sustains trans-
mission and disseminates infection to other groups. These
other groups might carry on considerable transmission. This
secondary group transmission, however, might eventually die
out without continuing input from the core. In that case, core
group screening will have broad effects on the overall popu-
lation. But if the other groups have just a little more
sustained transmission, they will not need continued input to
sustain transmission and core group reductions will have little
effect beyond the core. Nonlinear transmission systems
are full of such sensitivities that require model analyses to
identify. The power of non-causal models to predict differ-
ences associated with such dynamical differences will be
nearly zero.

Similar subtle differences may make it difficult for obser-
vations on Marburg virus, Ebola virus, or SARS epidemics
to predict the relative contributions of early diagnosis with
isolation, contact tracing with quarantine, or societal actions
to reduce contact in the control of an epidemic. We are not
saying that we cannot learn how to control the next epidemic
by studying past epidemics. We are saying that good control
decisions cannot be made based on the study of the outcomes
of different control actions in a series of epidemics using



models that do not capture mechanistic-causal aspects of the
spread of infection.

These two dimensions are intertwined. No database can
be used without theory and no theory can make good predic-
tions without data. Inferences that appear purely statistical
require the theoretical-causal assumption that the underlying
causal phenomena are not changing. Moreover, data is almost
always used outside the realm of statistical sampling theory
in order to generalize observations on one population to
another. That requires deducing that causal phenomena in the
study population do not differ from those in the population
of interest.

Conversely, theory requires data to test the theory. To
advance a science of infection transmission systems, we need
better ways to relate data and theory. One task is to develop
new methods that incorporate more theory into new ways to
obtain and analyze data. Another task is to construct theory
in such a way that it can be tested by repeatable observations
in diverse infection transmission contexts.

Until recently, most infection transmission system models
used little data or theory. One reason is that mathematical
analysis techniques can only be applied to simple models.
Computer model analysis can proceed using more realisti-
cally complex models. But the ethos of simplicity persists
and has inhibited the construction of realistically complex
theory that uses data from repeatable observations on phe-
nomena that can be generalized across transmission systems.
The data epidemiologists gather are always subject to com-
plexities that mathematical modelers have tended to ignore
in order to keep things simple. Now as epidemiologists are
becoming better modelers, model analyses of more realisti-
cally detailed decision processes are being pursued.

The dictum has been to keep things as simple as possible,
but no simpler. When making infection control decisions, most
models have probably been simpler than required to make
valid decisions. But there has been a weak ethos of pursuing
complexities that would show that models are simpler than
possible — that their simplifying assumptions ignore realistic
complexities that if incorporated into a model would change
inferences about infection control decisions. We advocate here
a process of inference robustness assessment to demonstrate
that a model is not simpler than needed to make an inference.
This approach serves both to choose between alternative
control actions or between alternative theories.

The process of inference robustness assessment

Inference robustness assessment is performed by compar-
ing an inference across different model forms. The inference
may be relevant to any of the uses of models that we listed
earlier. Robustness assessment is performed by determining
whether an inference made by analyzing one model is changed
when analyzing a different model that realistically relaxes
simplifying assumptions of the first model.

To show that an inference is not robust to simplifying
assumptions, four things must happen. First the inference must
be explicitly stated so that it can be evaluated under different
models. Second, clear criteria for meaningful differences in
inferences need to be established so that it is clear when an
inference is not robust. Third, the simplifying assumptions
whose realistic relaxation might change the inference need to
be identified. Finally, model forms that relax just the specific
assumptions of interest must be identified and analyzed.

There are good reasons for saying that a model should be
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as simple as possible. Realistic complexity can inhibit both
productive analysis and understanding. If a model has many
extraneous details, then analysis to determine the effects of
those details will consume resources and divert focus. As a
consequence, valuable lessons that the model might have
conveyed could be obscured. Moreover, if the main goal of
an analysis is to provide general insights about which control
actions will work under different conditions rather than to
help make a specific control decision, then simplicity is called
for because insights are stimulated or communicated by simple
models better than by realistically complex ones.

The reasons for saying a model should be no simpler than
possible are more urgent than the reasons for saying it should
be as simple as possible. A model that is simpler than possible
leads to bad decisions that might cost lives.

So when should one use a simple deterministic model that
ignores the role of chance events captured by more complex
stochastic models? When should one make the simplifying
assumptions that mixing is random rather than adding realis-
tic details about which groups mix separately from other
groups or about contact networks within groups? My answer
to these and similar questions is that the pursuit of simple
models is always justified as long as the model analysis task
is not viewed as just the analysis of a single simple model. I
contend that the model analysis task should always be viewed
as a robustness assessment task with analysis of a series
of models incorporating various levels of realistic detail.
Whenever that is the case, it is best to begin simply in the
anticipation that the more thorough analysis that is possible
with simple models will lead to insights that may lead to
better choice of realistic details to be added to the model when
concern arises that the model might be too simple to give a
correct answer to a question.

One can never know for sure that a model is not too simple
to give a correct answer. All models are constructed by mak-
ing simplifying assumptions. To assess robustness one can
relax each identified simplifying assumptions one by one
starting from a baseline simple model. But it is difficult to
identify all of the simplifying assumptions in simple models.
Each simplifying assumption might be relaxed in multiple
ways so that in fact simple models make assumptions about
each of the multiple dimensions in which the simplifying
assumption can be relaxed. For example, mass action contact
process assumptions (1) can be relaxed by reformulating the
way that the number of individuals in a population affects
the number of contacts each individual makes, by subdivid-
ing compartments across multiple dimensions, or by formu-
lating a multitude of different processes that could link one
individual to another in a network. It might seem that the
mass action model makes a simple assumption. But in this
light it makes a whole series of different unrealistic assump-
tions. Moreover, even if one is able to identify all the assump-
tions that allow for different possible ways of relaxing the
mass action assumptions, checking out each assumption by
relaxing it alone does not provide assurance that none of the
relaxed assumptions are problematic. One cannot be sure that
relaxing any set of two simplifying assumptions will not
change an inference when each relaxation alone did not.

How can effective decisions be reached when one can never
be sure that one has not failed to identify a set of assumptions
that have led to a bad decision? The answer is in the social
process of science and the social process of infection control.
On the science side, critical colleagues might see holes in an
inference missed by an original model creator. Likewise, vested



parties in control decisions are likely to see issues to address
that the scientists originally constructing a model have missed.
To serve both these ends, modeling strategies should be used
that promote a scientific discourse where epidemiologist,
modelers, and others find it easy to modify and reanalyze the
models that their colleagues have constructed and analyzed.

Model forms to be used in inference robustness
assessment

Multiple model forms can represent infection transmission
systems. We discuss here only a few of these. Sometimes a
whole series of different model assumptions can be identified
across two different model forms. Comparisons with fewer
assumption differences generate more knowledge about the
effects of assumptions and thus contribute more both to the
advance of theory and to effective decision making. Further
discussion of this can be found elsewhere (2,3). The model
dimensions we discuss here are not exhaustive. They include
continuous populations vs. discrete individuals, deterministic
vs. stochastic, compartmental versus unique individual, mass
action contact versus population pattern contact versus indi-
vidual network contact.

Some traditions use differential equations to model popula-
tion groups characterized by their state of infection and
immunity and by how they interact with other population
groups. These are deterministic compartmental models that
model continuous populations rather than discrete individ-
uals. They assume that the population in each compartment
can be broken into an infinite number of individuals. They
are the basis of a couple classical infection transmission
modeling texts (4,5). Deterministic means that the model
generates a single pattern of compartment sizes with no varia-
tion being generated by chance. Compartmental means that
homogeneous population groups are modeled where all popu-
lation in a compartment is homogeneously identical.

A variety of approaches to formulating contact patterns
are possible within this tradition. Different contact formula-
tions within this tradition generate different total numbers of
contacts as the population sizes in mixing groups change (6,7).
Metapopulation models have individuals migrating between
groups to generate patterns of contact (8). Structured mixing
models use a statistical mechanics approach to location of

population. They never specify where population is, only the
chances that it is in one place or another (9). Because deter-
ministic compartmental models are of continuous populations,
they have a harder time dealing with contact structure issues
that arise at the individual level such as bias in the probabili-
ties that two contacts of one person are in contact with each
other. Contact pattern issues of this sort can have large effects
on transmission dynamics. A correlation model approach
has been devised to address this sort of issue within the
context of differential equation models (10). However, many
situations where networks of contacts affect transmission
dynamics are difficult to address when modeling continuous
populations rather than discrete individuals.

Stochastic compartmental models assume that population
sizes can only take on discrete integer values. They can for-
mulate the same contact patterns that deterministic compart-
mental models can. As one relaxes the infinite population
size assumption by transiting from a continuous population
model to a discrete integer population model, one is usually
forced to relax the deterministic behavior assumption and
model a stochastic process.

Discrete individual models do not make homogeneous
compartmental assumptions. They allow each individual to
experience unique effects of causal model parameters so
that what was a single valued parameter in compartmental
models becomes a distribution of parameter values in discrete
individual models.

The number of model assumptions that can be relaxed by
transiting from one model form to another is almost infinite.
A few illustrative assumptions and their relevant transitions
are listed in Table 1.

Data analysis for inference robustness assessment

One way that transmission system science is gaining
strength is through the development of new ways to use trans-
mission system models in the analysis of data. Transmission
system models assume nonlinear dynamics where popula-
tion effects are not just the sum of individual effects. Data
analysis using such models presents some difficult challenges.
Least squares parameter fitting approaches require such
extensive searches of parameter space that they become
computationally challenging. When one uses approaches like

Table 1. Illustrative transitions between model types for the purpose of relaxing simplifying model assumptions

Simpler model type

More complex model type

Assumptions relaxed

Deterministic compartmental
model with random mixing

Stochastic compartmental model
with random mixing

Stochastic compartmental model
with group structured mixing

Individual event history model
with mass action assumptions

Network model with same macro
contact patterns and random
linkage process

Network model with same macro
contact patterns and biased
linkage process

Stochastic compartmental model
with random mixing

Stochastic compartmental model
with group structured mixing

Individual event history model
with group structured mixing and
a distribution of individual
transmission risks

Network model with same macro
contact patterns and random
linkage process

Network model with same macro
contact patterns and biased
linkage process

Agent based model where
characteristics of contacts are
screened according to past history
with such individuals

Infinite population size in each
compartment

Equal probability of contacting
different classes of individuals

Fixed effects for transmission
risks become random effects

Instantaneous and thorough
mixing of population after each
contact

No selectivity for partners to
whom long term linkages will be
made

Markov assumption that past
experiences do not affect linkage
parameter values
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Fig. 1. Robustness assessment of an analysis that fit data from the Beijing SARS epidemic to determine the relative effects of
contact tracing with quarantine, early diagnosis and isolation of cases without a history of contact, and contact reductions in

controlling the epidemic.

bootstrap methods to get a handle on the variance in such
estimates generated by sampling issues, the computational
challenges are increased. Markov Chain Monte Carlo (MCMC)
methods of analysis have produced promising advances (11).
They, however, can be even more computationally challeng-
ing. The challenges for both methods are compounded by the
need for robustness assessment. Any single set of parameter
estimates from a least squares approach or any set of distri-
butions of parameter values from an MCMC approach must
make the assumptions of the underlying transmission system
model. The parameter estimates made might not be robust to
realistic violation of assumptions in the transmission model.
Thus, just as the pure model analysis discussed in previous
sections should use robustness assessment methods, data
analysis should also use such methods.

One approach is to construct a model that captures realis-
tic complexities of a transmission system by setting some
parameter values while allowing the parameters to be
estimated to vary. An example using a least squares approach
to fitting parameters of a deterministic compartmental model
is presented for SARS in Beijing in the accompanying
figure. A series of realistic model dimensions were fixed
across a range that allowed for fitting other parameters such
that the average difference between model generated and
observed data points was less than 20%. Then using the
parameters estimated for each fit, the implications of param-
eter estimates were assessed for inferences about the relative
benefit that was gained during the epidemic from contact
tracing with quarantine of contacts, early diagnosis and isola-
tion of cases without previously identified contact histories
with infected individuals, and contact rate reduction. Each
point in the figure represents a set of parameter values that
includes the full range of each parameter value that still
allows for fitting the observations. As can be appreciated in
panel A of Figure 1, the inference that contact tracing with
quarantine generated more benefit than early diagnosis with
isolation is robust in that this inference holds across a full
range parameter sets. Inferences about the relative benefits
of contact rate reductions and the other interventions were
not robust, as seen from the data points in panel B. A combi-
nation of identifiability issues and transmission system
sensitivities account for this lack of robustness.

S7

A vision of the future of transmission system science

I believe that transmission system science is entering an
era where it will move up both database and theory strength
scales to become a powerfully predictive science. The key
elements in this advance will be new sources of data, more
involvement of field and theoretical epidemiologists in trans-
mission system modeling as software makes modeling easier
for them, and continuing advances in the use of transmission
system models for data analysis.

One key data advance is the increasing ability to sequence
genomes from infectious agents isolated in different parts of
the transmission system at different times. Because transmis-
sion generally fixes variation in sequences that arise during
infectious agent proliferation within a host, transmission
system models generate expected patterns of genetic relation-
ships between organisms isolated from different parts of the
system. The observed genetic relationships can thus be used
to estimate transmission system model parameters.

Another key data advance is the identification of infec-
tious agents in environmental samples. Such identifications
in representative parts of the transmission system can be
pursued more cheaply than agent identifications from patients
in representative parts of the transmission system. Moreover,
new technology for this task, such as the laboratory on a chip
technology presented in another presentation in the meeting
(12), will lower the costs and make more thorough sampling
for epidemiological analysis possible.

As software, environmental agent identification, and agent
sequence analyses improve, more specific hypotheses about
the environmental conditions and personal behaviors that
affect transmission via various modes will be investigated.
This, together with experiences from robustness assessments
using the new software, will lead to stronger theory on which
to base model construction. The stronger theory will in turn
allow for more extraction of information from the data in
terms of more focused and informative assessments of infer-
ence robustness.

To realize this vision, computer scientists, mathematicians,
biochemists, industry, and above all epidemiologists must
work together. I believe that an inference robustness assess-
ment focus is a good way to insure productive collaboration
in these efforts.
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