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SUMMARY: It has recently become possible to simulate directly dynamics on very large networks. This paper
describes a model of epidemiology on a social network, the Epidemiological Simulation System (EpiSims), and
offers general speculation on analyzing disease dynamics on networks. We describe the process of building a
realistic social network, describe several different definitions of the network, each useful for certain purposes.
Finally, we raise some important questions about structural properties of networks and how they influence dynamics.
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Introduction

It has recently become possible to simulate directly dynam-
ics on very large networks (1). These simulations create new
possibilities for mathematical modeling of epidemiology (2-
4). The Modeling Infectious Disease Agent Study (MIDAS)
established by the National Institute for General Medical
Sciences, part of the U.S. National Institutes of Health,
is currently composed of three research teams and a bio-
informatics and computational support team. Each of the
research teams has developed social network based models
for epidemiology. This paper describes one of the models,
the Epidemiological Simulation System (EpiSims) (5), and
offers general speculation on analyzing disease dynamics on
networks.

Section I describes the process of building a realistic social
network. Some of this process is common to all the MIDAS
models. Section II demonstrates several different definitions
of the network, each useful for certain purposes. Section III
introduces some important questions -- specific to these
models -- about structural properties of networks and how
they influence dynamics.

Estimating a social network

Epidemiological models based on contacts among individ-
uals complement more traditional models based on an assump-
tion of homogeneous mixing among large subpopulations,
often referred to as SIR (for Susceptible-Infected-Removed)
models. If we represent people’s contacts as a graph in which
vertices represent people and edges represent contacts, an SIR
model would resemble a collection of complete graphs: ones
in which every pair of vertices is connected by an edge. Graphs
representing more realistic contact patterns have far fewer
edges and are much less regular.

One approach to building more realistic contact patterns is
to select edges to remove from the complete graph. This is
effectively the approach taken by structured population SIR
models, which allow heterogeneous mixing among large, but
homogeneously mixed, subpopulations. However, there are
an enormous number of ways to remove edges, and it is dif-
ficult to pursue this approach far enough to create realistic
mixing.

An alternative approach is to start with a set of vertices
(i.e., people) and slowly build up their contacts. This is the
approach we have taken. Using census data, land use data,
activity (or time use) surveys, and transportation networks,
we have created a detailed representation of a specific urban

area. There are several steps to this process: population syn-
thesis, activity assignment, location choice, and travel time
estimation. Each of these is briefly described in this section.

The first step is to create a synthetic population, typically
using census data for the U.S. The data consist of marginal
distributions for a large set of demographic variables such as
age, gender, and income in small areas, and joint distribu-
tions of the demographic variables for small samples in less
well-defined areas. The data are presented in these two
forms to protect individual privacy. Through a statistical
fitting technique, it is possible to create a population with
the correct marginal and joint distributions and assign each
synthetic household to an appropriate home location. For
example, both the number of people in a household and the
ages of those people agree with the census data. Indeed a
“census” of the synthetic population would be statistically
indistinguishable from the original census. Each person in
the synthetic population is assigned an identifier that allows
retrieval of associated demographics at any stage in the analy-
sis.

The next step is to assign a set of activities to each person
in every household. This step determines the fidelity of the
model, i.e. how well it captures the behavior of people on a
typical day. Some models use only a few activities for each
person, perhaps only home and either work or school. EpiSims
relies on an extremely realistic set of activities produced
by the TRansportation ANalysis and SIMulation System
(TRANSIMS) (6). How the level of fidelity affects the simu-
lated outcomes is an area of active research.

From activity surveys, we extract a set of templates along
with the demographics of households associated with each
template. We choose an activity template for each synthetic
household by matching its demographics with one of those
in the survey data. The templates may need to be adjusted in
the case of a partial match, for example, if the number of
children in the synthetic household is different from that in
the survey household.

Our estimate of the social network is complete when every
activity for each person has been assigned a location, arrival
and departure time. Constraints imposed by the transportation
system along with land use data and observations of travel
time distributions by purpose of trip can be combined to
provide good estimates for activity locations. In order to com-
bine all these data, we must estimate the travel time between
many locations by time of day given an initial assignment of
activities to locations. This estimate is produced using a
micro-simulation of the traffic induced by the specified
demand. These estimated travel times are fed back into loca-
tion choice and activity assignment algorithms in a loop. The
feedback process converges into an equilibrium in which each
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person’s activity location assignments and routes are feasible
and cannot be improved in the context of choices made by all
the other people.

This method of assigning activity locations is time-
consuming, but it has several advantages over attempts to
“observe” location choices directly. First, the model param-
eters are fit to more fundamental aspects of human behavior.
That is, we effectively capture how and why people choose to
move about as opposed simply to describing where they go.
The difference is crucial when we try to model hypothetical
situations. For example, no amount of observation of behav-
ior on a typical day will allow generalizing to behavior in
a crisis unless we use the observations to understand why
people make the observed choices. A second advantage is
that this method produces detailed information about indi-
vidual transportation choices as well as location of activities.
We estimate not only the origin and destination of each trip,
but also the vehicle (be it car, bus, or train) used, and who the
other passengers were. For a disease spread by casual, brief
contact this is likely to be important.

Depending on the resolution chosen for activity locations,
we may need to further partition the groups of people who
meet in a location, with what we refer to as a “sublocation”
model. In our model of Portland, for instance, a single activ-
ity location might be a large office building or university. We
have developed an ad-hoc set of rules for partitioning these
large locations. The rules are activity-specific. For example,
people in a work location may visit the same workgroup
every day, whereas shoppers might pick a different store at
random each time they visit a shopping location. Note that,
although our population is synthetic, the locations they visit
are real.

In principle, this process could be repeated with different
activity survey data to develop different typical days -- week-
ends instead of weekdays or holidays instead of school days.
We have not yet implemented this for EpiSims. Instead, we
repeat the same typical day over and over in each simulation.
It is also important to allow synthetic people to change their
behavior in response to a disease outbreak in general or to
becoming ill themselves. They might seek medical treatment
or over-the-counter medications, withdraw to the home, or
attempt to flee the city. Each of these actions would change
their contacts and hence the possible path of an outbreak.

Varieties of social networks

The structure that best represents our social network is a
time-dependent, bipartite, labeled graph. We adopt a mini-
mum time resolution, say one minute, and create a separate
graph for each different time. Because EpiSims is nearly
periodic in the absence of an outbreak, we might consider
1,440 graphs representing one day, one for each minute of
the day. By definition, a bipartite graph can be partitioned
into two subsets of vertices such that every edge goes from
an element of one subset to an element of the other. In this
case, one subset of vertices represents people and the other
represents locations. In the most general case, we might
consider a multipartite graph, with sets of vertices represent-
ing different concepts, perhaps related to a person’s role in
society. Locations may include such places as transit vehicles.
“People” vertices are labeled with demographic attributes;
“location” vertices, with geographic and land use attributes.
An edge between two vertices represents that the correspond-
ing person is currently in the corresponding location. Each

edge is labeled with the reason for the visit. The edge sets
change from one time to another. An alternative, more com-
pact representation uses a single graph and includes the
set of arrival and departure times in the label for each edge.
On the time scales we are interested in (days, and weeks)
we ignore changes in the vertex sets (due to births, deaths,
migration, and construction).

Unfortunately, such graphs are too large to analyze easily.
Even for a relatively small urban area such as Portland, there
are 1,440 graphs, each with 1.6 million people vertices and
160,000 location vertices, and tens of millions of edges. It is
easier to work with several projected versions of the graphs,
in particular the static person-person graph and the static
location-location graph. A static graph is produced from a
time dependent set of graphs by including in the static graph
every edge present in any of the time dependent graphs.
Alternatively, one drops arrival and departure times from the
labels and retains only total amount of time spent in each
location. This projection onto static graphs discards distinc-
tions between concurrent and sequential contacts that may
be important for some diseases.

Two further projections are natural for bipartite graphs.
The person-person graph includes an edge between two people
if and only if they were present in the same location at the
same time. The edge is undirected, and is labeled with the
duration of contact between the people. The location-location
graph includes an edge between two locations if and only if a
person traveled from one location directly to another. The
edge is directed, since there is a clear origin and destination
for the movement.

The static person-person graph is what is generally intended
by the term “social network” and our discussion below
focuses on this form of the network, but the other forms are
often useful. The location-location graph could be used to
model how contamination is spread by humans as disease
vectors. The full bipartite graph determines how a response
targeted at locations affects people. It is important to note
that the structural properties of the different graphs (described
in the next section) can vary significantly among the different
projections.

The social network summarizes how people move and
come into contact with each other in ways that are important
for studying the epidemiology of diseases spread through
casual contact. An additional transformation completes the
static picture for a particular infectious disease: replace the
duration of contact labeling each edge with a probability of
transmission in each direction, given that one of the people is
infectious. This probability depends on the demographics of
infectious and susceptible as well as the activity they are
engaged in, and of course the natural history of the disease.
For example, the probability of transmission from student to
teacher during a given time interval may be very different
from the probability of transmission from a worker to a
co-worker in the same time interval.

Characterizing networks for epidemiology

Simulation is provably the most efficient way to determine
the detailed dynamics of systems of interacting discrete
entities in an irregular network. Furthermore, simulations can
naturally incorporate intervention strategies such as deliver-
ing treatment or prophylaxis and increasing social distance by
closing schools or workplaces or limiting public gatherings.
However, it is possible to develop some intuition by examin-
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ing the static person-person network directly (7,8). The goals
of this analysis are fourfold:

1. determine vertices and edges that contribute most to
the propagation of disease;

2. determine structural properties of social networks that
are most relevant to disease propagation;

3. measure those properties on the instances we have con-
structed;

4. construct constrained random graphs similar in the prop-
erties deemed relevant to disease propagation.

With this information we can create new random graphs
that resemble social networks for the purposes of epidemiol-
ogy. Such random graphs would be helpful for populating
continental scale models or conducting sensitivity studies.
We can also design effective response strategies that make
efficient use of limited resources.

The problem of probabilistic transmission across a network
is closely related to the problems of random walkers and
percolation on a network. A random walker steps from one
vertex to another by choosing an edge at random. The problem
is to determine the distribution of vertices a random walker
will reach after some number of steps. This problem has been
studied in depth on regular networks such as lattices and on
Erdös-Rényi random graphs, but the version needed for
epidemiology is slightly different. Instead of a single walker
taking random edges through network, an outbreak is better
modeled by a set of random walkers who can potentially be
created and destroyed at each step along the way. Further-
more, the social networks the walker must traverse are not
well modeled by Erdös-Rényi graphs or lattices. Likewise,
the percolation problem, which is to determine whether a path
across a network exists as more and more edges or vertices
are removed, has been thoroughly studied, but once again
only for special network structures.

In this section, we describe some characterizations of net-
work structure that may provide insight into the dynamics
of disease outbreaks on social networks. The analysis here is
restricted to the person-person static network, ignoring the
weights along the edges. This is an extreme over-simplification
of the problem, but even so yields a rich set of questions.
Simulation naturally takes into account the full time-
dependent weighted network but is less amenable to analysis.

Some of the measures we will discuss are distributions of
a pointwise, or vertex-specific, statistic over all vertices. It is
often convenient to define the pointwise statistic in terms of
a local network centered on an index vertex. We organize

the local network as shown in Figure 1a, by defining sets of
vertices Sk(v0) at a graph distance k from the vertex v0.

Three local structural properties often discussed in this
context are degree distribution, clustering coefficient, and
assortativity. The degree of a vertex is the number of edges
connected to it (in a graph with directed edges, vertices can
have separate in and out degrees). The degree distribution is
simply the frequency of occurrence for each degree over all
the vertices. A graph whose degree distribution obeys a power
law, that is, one for which the frequency of occurrence of
degree d is proportional to d–α, is said to be scale free, because
the variance in degree diverges as the number of vertices
increases for α < = 2 (9). The clustering coefficient at each
vertex is the ratio of the number of edges between its neigh-
bors to the total possible number of edges. If the vertex’s
degree is d, then the possible number of undirected edges
between its neighbors is d (d-1)/2. If there are actually n
edges, the clustering coefficient at that vertex is 2n/d(d-1).
It describes the fraction of a person’s contacts who come into
contact with each other. Assortativity is the correlation
between values of vertex labels at each end of an edge. For
example, assortativity by degree is the correlation over all
the edges of the degrees of the vertices connected by the edge.
If high degree vertices are typically connected to other high
degree vertices, the assortativity by degree is high. Figure 2a
shows an example of two graphs with identical degree distri-
butions but different assortative mixing by degree.

Fig. 1.  Neighborhoods at increasing distance from a vertex v0. Each
vertex represents a specific synthetic person. Edges represent trans-
mission from one person to another person and are colored to denote the
transmission’s generation. A) and B) show two different simulated
outbreaks originating at v0.

Fig. 2.  A) top and bottom show two graphs with the same degree distribution (degree is 4 for each of the 5 green vertices and
1 for the 20 others) but different assortative mixing by degree. B) The blue vertex has a smaller degree than any other, but
a high betweenness, because it is on the only path between two clusters.

(1A) (1B)

(A)

(B)
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The graphs we have constructed for Portland do not fall
neatly into the scale free category. In fact, the degree distri-
butions of the different projections described in the previous
section are dramatically different. Conclusions drawn on the
assumption that the people-people graph is scale free do not
hold for our estimated social networks. To demonstrate this,
we have studied the behavior of the network as people with
high degree are removed. Contrary to some expectations, it
does not become disconnected until a large fraction of people
has been removed. Clustering and assortativity by degree are
much higher than for an Erdös-Rényi random graph with a
similar number of edges and vertices.

We turn now to global measures of structure. There are
again several well-known candidates: diameter, shortest path
distribution, expansion, and betweenness. The diameter of a
graph is the maximum length of the shortest path between
any pair of vertices. If the diameter grows slowly with the
number of vertices, the graph is said to represent a small world,
because there exists a short path between any pair of vertices
(10). The diameter is an extreme statistic for the distribution
of shortest path lengths. The distribution itself may hold more
structural information than its maximum value. Expansion
measures how rapidly neighborhoods grow. More formally,
the vertex expansion is the minimum over all subsets (of
fewer than half the vertices) of the ratio of the number of
neighboring vertices to the number of vertices in the subset.
Betweenness is best thought of as the number of shortest paths
traversing a given vertex. Its value is high for a person who
connects two otherwise non-interacting groups as in Figure
2b.

The diameter of our estimated social network is 6. This
indicates that it is indeed a small world network, although
since there is only one instance there is no way to determine
how diameter scales with size. Our estimates for expansion
indicate that social networks expand very rapidly, corre-
sponding to potential extremely rapid spread of disease.
Furthermore, they are robust against being broken into many
disconnected pieces by any obvious strategy for deleting
vertices or edges.

Unfortunately, because these measures are designed to be
sensitive to global structure, they are very costly to compute,
especially on such large graphs. In addition, betweenness
is very sensitive to deletions of individual vertices or edges
from the graph. These computational difficulties have led us
to consider alternative measures. Defining a new measure
presents an opportunity to incorporate two epidemiologically
important aspects into the analysis of static graphs: the
temporal interpretation of graph distance and the importance
of distance from the initially infected people.

For an infectious disease, transmission involves a time
delay during which the newly infected person incubates a
disease and becomes infectious. There may be an additional
delay as long as the length of the infectious period before
transmission occurs. The speed with which an outbreak
spreads through a population, and the speed with which
response measures must be put in place, depend on both the
number of people infected by each case and the generation
time. Although the initial cases of an outbreak may be dis-
tributed randomly throughout the population, as the outbreak
develops, infected people will represent a biased subset,
chosen according to the mixing properties defined by the net-
work. After k generations of transmission, the set of people
most likely to have been infected is related to the mixing
properties of paths of length k.

Consider an outbreak beginning with a single infected
person. The number of people exposed in the first generation
will be the number of contacts, or degree, of that person. In
the second generation, however, many contacts will be shared
among several people, and several people who are exposed
may have been contacts of the index case. In terms of the
neighborhood sets defined above, the disease may either
follow edges from S1 to S2 or from S1 to S1. These dynamics
are related to clustering. High clustering means that the
disease spreads outwards to (Sk with larger k) from the index
case more slowly, but that the probability of eventually reach-
ing any fixed distance from the index case is increased. How
these two dynamics are balanced depends on the disease and
specifically on the probability of transmission. For very large
transmission probabilities, the neighborhood Sk will be
entirely infected in generation k, hence the expansion of these
subsets is crucial and clustering is irrelevant. For very low
transmission probabilities, both clustering and expansion
are important in determining how fast the disease spreads
outward from the index case. We seek statistics that will gen-
eralize the structural properties discussed above from strictly
local or global properties to intermediate scale properties.

We thus propose meso-scale versions of the most useful
path based statistics described above: betweenness and expan-
sion. A vertex’s k-betweeness is the betweenness calculated
using all paths of length k, i.e. the number of self-avoiding
paths of length k (differing by at least one vertex) that pass
through a given vertex. We extend the definition to include
all paths rather than just shortest paths because we are inter-
ested in any person who might be infected after exactly k
generations. We restrict to self-avoiding paths because for
many diseases, an infected person becomes immune to another
infection. Note that degree is the 1-betweeness. We define
vertex k-expansion at a vertex v0 as the number of vertices
in Sk+1 divided by the number of vertices in Sk. To study the
relation between clustering and expansion, we also define
the relative edge k-expansion as the number of edges from Sk

to Sk+1  divided by the number of edges from Sk that remain in
Sk or end in Sk-1.

It seems likely that distributions of these meso-scale
statistics for a few values of k will be most appropriate for
characterizing social networks for epidemiology. As for glob-
al measures, it will be very hard to estimate these properties
for a real person. There remain two reasons to consider such
essentially unobservable properties. One is that we will use
these structural properties only to compare social networks
and thus need never estimate the property for any real person.
The second is that we may be able to correlate the properties in
our estimated networks with some more readily measurable
property.
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