国立感染症研究所

記事インデックス

 

 

 

引用文献

(digital object identifier, doi: わかる論文のみ記載)

[1] Karlsson KA (1970) On the chemistry and occurrence of sphingolipid long-chain bases, Chem Phys Lipids, 5, 6-43. doi:

[2] Hanada K (2003) Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism, Biochim Biophys Acta, 1632, 16-30. doi:10.1016/S1388-1981(03)00059-3.

[3] Merrill AH, Jr. (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics, Chem Rev, 111, 6387-6422. doi: 10.1021/cr2002917.

[4] Hanada K (2014) Co-evolution of sphingomyelin and the ceramide transport protein CERT, Biochim Biophys Acta, 1841, 704-719. [Corrigendum (2014) 1841, 1561-1562; doi: 10.1016/j.bbalip.2014.08.002].

[5] Hori T, Sugita M (1993) Sphingolipids in lower animals, Prog Lipid Res, 32, 25-45. doi:

[6] Garrett TA, Schmeitzel JL, Klein JA, Hwang JJ, Schwarz JA (2013) Comparative lipid profiling of the cnidarian Aiptasia pallida and its dinoflagellate symbiont, PLoS One, 8, e57975. doi: 10.1371/journal.pone.0057975.

[7] Dickson RC (2008) Thematic review series: sphingolipids. New insights into sphingolipid metabolism and function in budding yeast, J Lipid Res, 49, 909-921. doi: 10.1194/jlr.R800003-JLR200.

[8] Sperling P, Heinz E (2003) Plant sphingolipids: structural diversity, biosynthesis, first genes and functions, Biochim Biophys Acta, 1632, 1-15. doi:

[9] Berkey R, Bendigeri D, Xiao S (2012) Sphingolipids and plant defense/disease: the "death" connection and beyond, Front Plant Sci, 3, 68. doi: 10.3389/fpls.2012.00068.

[10] Ternes P, Wobbe T, Schwarz M, Albrecht S, Feussner K, Riezman I, Cregg JM, Heinz E, Riezman H, Feussner I, Warnecke D (2011) Two pathways of sphingolipid biosynthesis are separated in the yeast Pichia pastoris, J Biol Chem, 286, 11401-11414. doi: 10.1074/jbc.M110.193094.

[11] Wiegandt H (1992) Insect glycolipids, Biochim Biophys Acta, 1123, 117-126. doi:

[12] Hakomori SI (2008) Structure and function of glycosphingolipids and sphingolipids: recollections and future trends, Biochim Biophys Acta, 1780, 325-346. doi: 10.1016/j.bbagen.2007.08.015.

[13] Furukawa K, Ohkawa Y, Yamauchi Y, Hamamura K, Ohmi Y, Furukawa K (2012) Fine tuning of cell signals by glycosylation, J Biochem, 151, 573-578. doi: 10.1093/jb/mvs043.

[14] Inokuchi J (2011) Physiopathological function of hematoside (GM3 ganglioside), Proc Jpn Acad Ser B Phys Biol Sci, 87, 179-198. doi:

[15] Kawasaki S, Moriguchi R, Sekiya K, Nakai T, Ono E, Kume K, Kawahara K (1994) The cell envelope structure of the lipopolysaccharide-lacking gram-negative bacterium Sphingomonas paucimobilis, J Bacteriol, 176, 284-290. doi:

[16] Naka T, Fujiwara N, Yano I, Maeda S, Doe M, Minamino M, Ikeda N, Kato Y, Watabe K, Kumazawa Y, Tomiyasu I, Kobayashi K (2003) Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum, the type species of genus Sphingobacterium, Biochim Biophys Acta, 1635, 83-92. doi:

[17] Nichols FC, Riep B, Mun J, Morton MD, Bojarski MT, Dewhirst FE, Smith MB (2004) Structures and biological activity of phosphorylated dihydroceramides of Porphyromonas gingivalis, J Lipid Res, 45, 2317-2330. doi: 10.1194/jlr.M400278-JLR200.

[18] van Ooij C, Kalman L, van I, Nishijima M, Hanada K, Mostov K, Engel JN (2000) Host cell-derived sphingolipids are required for the intracellular growth of Chlamydia trachomatis, Cell Microbiol, 2, 627-637. doi:

[19] Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids, Nat Rev Mol Cell Biol, 9, 139-150. doi: 10.1038/nrm2329.

[20] Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH, Jr. (2006) Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy, Biochim Biophys Acta, 1758, 1864-1884. doi: 10.1016/j.bbamem.2006.08.009.

[21] Kolter T, Sandhoff K (2006) Sphingolipid metabolism diseases, Biochim Biophys Acta, 1758, 2057-2079. doi: 10.1016/j.bbamem.2006.05.027.

[22] Auer-Grumbach M (2008) Hereditary sensory neuropathy type I, Orphanet J Rare Dis, 3, 7. doi: 10.1186/1750-1172-3-7.

[23] Vitner EB, Platt FM, Futerman AH (2010) Common and uncommon pathogenic cascades in lysosomal storage diseases, J Biol Chem, 285, 20423-20427. doi: 10.1074/jbc.R110.134452.

[24] Holland WL, Summers SA (2008) Sphingolipids, insulin resistance, and metabolic disease: new insights from in vivo manipulation of sphingolipid metabolism, Endocr Rev, 29, 381-402. doi: 10.1210/er.2007-0025.

[25] Hla T, Dannenberg AJ (2012) Sphingolipid signaling in metabolic disorders, Cell Metab, 16, 420-434. doi: 10.1016/j.cmet.2012.06.017.

[26] Zeidan YH, Hannun YA (2007) Translational aspects of sphingolipid metabolism, Trends Mol Med, 13, 327-336. doi: 10.1016/j.molmed.2007.06.002.

[27] Chiba K, Kataoka H, Seki N, Shimano K, Koyama M, Fukunari A, Sugahara K, Sugita T (2011) Fingolimod (FTY720), sphingosine 1-phosphate receptor modulator, shows superior efficacy as compared with interferon-beta in mouse experimental autoimmune encephalomyelitis, Int Immunopharmacol, 11, 366-372. doi: 10.1016/j.intimp.2010.10.005.

[28] Garofalo K, Penno A, Schmidt BP, Lee HJ, Frosch MP, von Eckardstein A, Brown RH, Hornemann T, Eichler FS (2011) Oral L-serine supplementation reduces production of neurotoxic deoxysphingolipids in mice and humans with hereditary sensory autonomic neuropathy type 1, J Clin Invest, 121, 4735-4745. doi: 10.1172/JCI57549.

[29] Hanada K (2005) Sphingolipids in infectious diseases, Jpn J Infect Dis, 58, 131-148. (Open access: https://www0.niid.go.jp/JJID/58/131.pdf)

[30] Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis, Infect Immun, 74, 28-39. doi: 10.1128/IAI.74.1.28-39.2006.

[31] Zhang K, Bangs JD, Beverley SM (2010) Sphingolipids in parasitic protozoa, Adv Exp Med Biol, 688, 238-248. doi:

[32] Hanada K, Nishijima M, Akamatsu Y (1990) A temperature-sensitive mammalian cell mutant with thermolabile serine palmitoyltransferase for the sphingolipid biosynthesis, J Biol Chem, 265, 22137-22142. (Open access: http://www.jbc.org/content/265/36/22137.long)

[33] Hanada K, Nishijima M, Kiso M, Hasegawa A, Fujita S, Ogawa T, Akamatsu Y (1992) Sphingolipids are essential for the growth of Chinese hamster ovary cells. Restoration of the growth of a mutant defective in sphingoid base biosynthesis by exogenous sphingolipids, J Biol Chem, 267, 23527-23533. (Open access: http://www.jbc.org/content/267/33/23527.long)

[34] Hanada K, Nishijima M, Akamatsu Y, Pagano RE (1995) Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes, J Biol Chem, 270, 6254-6260. (Open access: http://www.jbc.org/content/270/11/6254.long)

[35] Hanada K, Hara T, Fukasawa M, Yamaji A, Umeda M, Nishijima M (1998) Mammalian cell mutants resistant to a sphingomyelin-directed cytolysin. Genetic and biochemical evidence for complex formation of the LCB1 protein with the LCB2 protein for serine palmitoyltransferase, J Biol Chem, 273, 33787-33794. (Open access: http://www.jbc.org/content/273/50/33787.long)

[36] Hanada K, Hara T, Nishijima M (2000) Purification of the serine palmitoyltransferase complex responsible for sphingoid base synthesis by using affinity peptide chromatography techniques, J Biol Chem, 275, 8409-8415. (Open access: http://www.jbc.org/content/275/12/8409.long)

[37] Hanada K, Mitamura T, Fukasawa M, Magistrado PA, Horii T, Nishijima M (2000) Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum, Biochem J, 346 Pt 3, 671-677. (Open access: http://www.biochemj.org/bj/346/0671/bj3460671.htm)

[38] Bejaoui K, Uchida Y, Yasuda S, Ho M, Nishijima M, Brown RH, Jr., Holleran WM, Hanada K (2002) Hereditary sensory neuropathy type 1 mutations confer dominant negative effects on serine palmitoyltransferase, critical for sphingolipid synthesis, J Clin Invest, 110, 1301-1308. doi: 10.1172/JCI16450.

[39] Yasuda S, Nishijima M, Hanada K (2003) Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells, J Biol Chem, 278, 4176-4183. doi: 10.1074/jbc.M209602200. (Open access: http://www.jbc.org/content/278/6/4176.long).

 

 

花田賢太郎(感染研 品質保証・管理部、細胞化学部併任) 

 2013210日)2014331 改訂)(2016年10月18 図1::GlcCer構造図改訂)(2017年1 月13 余談1追加

2018年11月19 図1:Dihydroceramide desaturase反応改訂)(2021年4月1日 所属更新)

 

 

関連する他のページ一覧

 

花田の研究テーマなど

I. 私の志向する生化学、細胞生物学,そして体細胞遺伝学

II. スフィンゴ脂質についてこのページ)

III. 哺乳動物細胞におけるセラミド輸送に関する研究

IV. 病原体による宿主脂質ハイジャック機序の解明と創薬への応用

V. 動物培養細胞に関する用語など

 

VI. Vero細胞の物語 ~その樹立からゲノム構造の決定、そして未来へ~

花田研究業績

その他の記事

1.生命、細胞、生体膜

2. スフィンゴ脂質およびセラミドの命名事始め(外部サイトへリンク)
3. セラミド研究史概略(外部サイトへリンク)

 

 

 

 

 

*Hanada K (2014) Co-evolution of sphingomyelin and the ceramide transport protein CERT,

Biochim Biophys Acta, 1841, 704-719. doi: 10.1016/j.bbalip.2013.06.006 [Corrigendum (2014) 1841, 1561-1562; doi: 10.1016/j.bbalip.2014.08.002].

 

 

 

Copyright 1998 National Institute of Infectious Diseases, Japan

Top Desktop version